

Mass production of insects for food and feed

Food conversion Table 1.2: Examples of food conversion for some minilivestock under farming conditions Reference Animals Food conversion* Snails 1.2-2 Elmslie, 2004 (Helix adspersa) Crickets (Acheta domesticus) 1.7 Collavo et al., 2002 Chicken 2 Collavo et al., 2002 Pork 3.8 Collavo et al., 2002 Beef 7 Collavo et al., 2002 *Dried food required for fresh available meat. Paoletti and Dreon (2005) POLYTECHNIC OF COIMBRA Rui Costa May 2018

We already eat insects in other food products!

Product	Type of insect contamination	Maximum permissible level				
Canned sweet corn	Insect larvae (corn ear worms or corn borers)	Two or more 3 mm or longer larvae, cast skins, larval or cast skin fragments, the aggregate length of insects or insect parts exceeds 12 mm in 24 pounds				
Canned citrus fruit juices	Insects and insect eggs	Five or more Drosophila and other fly eggs per 250 ml or 1 or more maggots per 250 ml				
Frozen broccoli	Insects and mites	Average of 60 or more aphids and/or thrips and/or mites per 100 grams				
Hops	Insects	Average of more than 2 500 aphids per 10 grams				
Ground thyme	Insect filth	Average of 925 or more insect fragments per 10 grams				
Ground nutmeg	Insect filth	Average of 100 or more insect fragments per 10 grams				
Source: USFDA, 20 [°]	11.					

- The primate with the most diverse entomophagy
- Most feel repulsion

POLYTECHNIC OF COIMBRA

In Japan insects are eaten as part of the traditional diet

Rui Costa

May 2018

- Croatia the cheese maggot (Piophila casei L.) is regarded as a delicacy
- Sugar-rich crops of Zygaena moths (Italy)

Nutrition

Essential amino acids

Unit (mg/g crude protein)	A. diaperinus	T. molitor	Z. morio	A. domesticus	B. dubia	Casein	Soybean	1985 FAO/WHO /UNU
Methionine +								
Cvsteine	26	26	24	25	23	35	24	22
Valine	58	61	63	55	52	63	49	39
Isoleucine	43	43	46	36	31	54	47	30
Leucine	66	73	71	66	56	95	85	59
Phenyl-alanine								
+ tyrosine	120	100	111	92	93	111	97	38
Histidine	34	29	31	21	23	32	25	15
Lysine	61	54	54	53	43	85	63	45
Threonine	39	39	40	35	32	42	38	23
Tryptophan	12	12	14	9	8	14	11	6
Sum of EAA	459	437	454	392	361	531	439	277
POL	/TECHNI	С						
OF C	OIMBRA	Ň			Rui Costa			May 2018

Fatty acids

Table 14.5: Proportion of fatty acids (%) of diverse organisms for obtention of animal protein (Adapted from National Research Council, 1988)

Organisms	Saturated acid	Monounsaturated acid	Polyunsaturated acid
Cattle	52.0 (28.1)	44.2	3.2
Pig	44.1 (24.3)	44.3	11.6
Poultry	35.5 (20.2)	40.8	22.7
Fish	29.6 (22.6)	39.6	30.8
Insects	11.0-43.4 (0.1-9.1)	55.9	57-100

For cattle, average of 27 cuts; pig 16; poultry 8; fish 3 types with 2 products of each type (e.g. Halibut, Tuna); insects maximum and minimum values from 27 analyzed species (percentage of stearic acid given in parentheses). Modified from DeFoliart G., 1991.

Rui Costa

May 2018

	PO	LYI	ECH	NIC
1 1 1	OF	CO	IMB	RA

Regulation

<section-header><section-header><section-header><section-header><section-header><section-header>

	~	JUN	<i>_</i> US					
Table 27.9: Annual Cozzi, 2002)	production o	f different	crops per l	hectare (ha)	; 1 q = 100) kg (pers	. comm. G.	
Lucern (Medi	cago sativa). I	nav				130 c/ba:		
Corn flour (Z	lea mays)					120 0	g/ha;	
Silage corn (2	Zea mays)			800 q/ha; 40 q/ha; 70 q/ha;			q/ha;	
Soybean flou	r (Glycine ma	x)					q/ha;	
Wheat (Tritic	um durum)							
Sugar beet (B	Sugar beet (Beta vulgaris var. esculenta)				650 q/ha.			
Table 27.10: Resourd dairy cow diet (DCI	ces and cultiv D)	vable surfa	ce needed	to produce	1 ton of A	cheta dome	esticus with	
	Soybean flour	Lucern	Corn	Wheat	Sugar beet	Silage corn	Total	
Resources needed	6.4 q 1596 m ²	5.5 q 425 m ²	4.6 q 382 m ²	4.1 q 593 m ²	3.6 q 56 m²	3.5 q 44 m²	27.8 q 3096 m²	
Surface needed					-	-		

