

Biorefinery concept: Greener approach of integration of biofuels and bioproducts delivery

Rafał M. Łukasik

Investigador Principal Laboratório Nacional de Energia e Geologia I.P. Unidade de Bioenergia Lisboa e-mail: <u>rafal.lukasik@lneg.pt</u>

Laboratório Nacional de Energia e Geologia, I.P. **National Laboratory of Energy and Geology**

Investigação para a Sustentabilidade

Labóratorio Nacional de Energia e Geologia, I.P.

UB-Unit of Bioenergy gathering together skills in 4 Thematic Areas

Head:	Francisco Gírio, PhD
Co-coordinator:	Alberto Reis, PhD

1. ENDOGENOUS BIOMASS RESOURCE

Contact: Filomena Pinto, PhD

(filomena.pinto@lneg.pt)

(francisco.girio@lneg.pt) (alberto.reis@lneg.pt)

2. BIOFUELS & BIOPRODUCTS

Contact: Rafal Łukasik, PhD

(rafal.lukasik@lneg.pt)

4. SUSTAINABILITY FOR BIOENERGY

Contact: Francisco Gírio, PhD

(francisco.girio@lneg.pt)

3. MICROORGANISMS, MICROALGAE & ENZYMES TOWARDS BIOECONOMY

Contact: Susana Marques, PhD

(susana.marques@lneg.pt)

Staff= 30 researchers + 35 grantees and students

Labóratorio Nacional de Energia e Geologia, I.P.

UB-Unit of Bioenergy gathering together skills in 4 Thematic Areas

Head:	Francisco Gírio, PhD
Co-coordinator:	Alberto Reis, PhD

(francisco.girio@lneg.pt) (alberto.reis@lneg.pt)

1. ENDOGENOUS BIOMASS RESOURCE

Contact: Filomena Pinto, PhD

2. BIOFUELS & BIOPRODUCTS

_NEG

Contact: Rafal Łukasik PhD

for 2017-2021 TOTAL **EU** FUNDING in **H2020** = **3.4 M€** TOTAL **NATIONAL** FUNDING = **2.6 M€**

(francisco.girio@lneg.pt)

3. MICROORGANISMS, MICROALGAE & ENZYMES TOWARDS BIOECONOMY

Contact: Susana Marques, PhD

(susana.marques@lneg.pt)

Staff= 30 researchers + 35 grantees and students

- Biomass is natural renewable and abundant feedstock in Portugal
- Contribution of Biomass for national targets

Transport – the main sector of primary energy (37%) Diesel (71%), Gasoline (19%), Jet-A1 (2%),...

Source: DGEG

The GHG emission per economy sector

Figure 7: Evolution of GHG emissions by sector (1990=100), EU¹⁶

<u>Status of Advanced Biofuels – implementation to the market</u>

Туре	Fuel	Time to deployment after REDII, years
Commercial	Crop based, HVO, Anaerobic Digestion to Biomethane	0
1 st of a kind, ready for commercialisation	Cellulosic ethanol, Methanol, DME Synthetic Biomethane	3
Innovation ready for 1 st of a kind	Other Lignocellulosic Synthetic fuels	4-8
Advanced innovation stage	Pyrolysis oils, Synthetic and Low Carbon Fossil Fuels	5-10
Early innovation stage	e-fuels, algae, etc.	5-8

Source: STF, SGAB Report, 2017

Some exemples of (European) implementation of advanced biofuels in the industrial scale

Transport – Advanced biofuels

Toyota to supply its hydrogen technology to Caetanobus SA (Portugal) Europe

- Toyota's fuel cell system to be used in Caetanobus' first FCEV city buses
- Caetanobus to launch first hydrogen demonstration city bus in autumn 2019

Lisbon, Portugal—September 26th, 2018—Toyota today took another important step towards a broader hydrogen society by announcing that it will provide its hydrogen fuel cell technology to Caetanobus SA in Portugal.

Groundbreaking for Clariant's sunliquid[®] cellulosic ethanol plant in Romania

- Investment represents biggest industrial commitment by an international corporation in the region of Craiova
- Location chosen for combination of feedstock supply and infrastructure
- Annual production capacity of 50 000 tons of cellulosic ethano

Muttenz, September 12, 2018 – Clariant, a world leader in specialty chemicals, toda started construction of the first large-scale commercial sunliquid plant for the prod cellulosic ethanol made from agricultural residues. At the flagship facility, the sunlideveloped by the company is being used on an industrial scale for the first time. The

+ 9.2 %

The Increase of biofuels consumption for transport in the European Union between 2016 and 2017 (in energy content)

SCANIA – first Scania Bioethanol truck (**ED95**) sold to a customer (Lantmannen Agroetanol) - 29.10.2018 (source: www.scania.com)

Sustainability: ED95- Bioethanol blended with an ignition improver, reduces 90% GHG emmissions.

Technology: The 13-litres bioethanol engine delivers 2,150 Nm, equal to that of its diesel sibling, and the fuel consumption is also on pair with a conventional diesel engine.

Most significant engine changes: Modification of the fuel injection system and the cylinders, for increase the compression.

NISSAN – Pioneer in technology bringing together bioethanol, hydrogen and electricity to power automotive vehicles

Comparação dos custos de rodagem (apenas para referência) Running cost

e-Bio Fuel-Cell... Calculated with Nissan target performance, assumed vehicle conditions and estimated 45% ethanol price based on the ethanol price: ¥64/L (based on E100 price in Brazil)

EV and Gasoline ICE... Calculated with equivalent condition with e-Bio Fuel-Cell case

Sustainability:Carbon-free technology (W-T-W) – CO2 emmissions = CO2 uptake.

Technology: A SOFC (solid oxide fuel cell) using bioethanol as fuel.

Performance: Combining the SOFC-powered ethanol (either 100% ethanol or 45% etanol and 55% water) with motor and 24 kWh electric battery Nissan SOFC achieves an autonomy of 600 kms (2017).

Energy efficiency and GHG emissions

Vehicle	Fuel cons (L gasoline e	sumption eq./100 km)	GHG emissions (g CO ₂ eq./km)		
	WTW	TTW	WTW	TTW	
Gasoline	6,00	5,10	144,00	121,00	
Diesel	4,70	3,90	113,00	93,00	
Fuel Cell H ₂	4,53	2,21	83,66	0,00	
Fuel Cell Ethanol (100%)	4,70	2,45	14,07	56,34	
Electricity (BEV)	3,87	1,38	50,43	0,00	

<u>Source</u>: Well to wheel analysis of low carbon alternatives for road traffic. *Energy and Environmental Science*. 8, 3313 (2015)

Figure 10: RED II proposed structure of caps and minimum shares for the various fuels³⁰

³⁰ K. Maniatis, "The role of Advanced Biofuels in Decarbonising Transport RED II", Lignofuels 2017, Helsinki, adapted from an EC package presentation on RED II.

Source: STF, SGAB Report, 2017

The Forest Biomass Resources

Food waste vs. Food lost

http://www.fao.org

Broader concept of "Biomass" – Circular Economy

The Economics of the Coming Spaceship Earth By Kenneth E. Boulding, 1966

The circular economy

Biomass – source of valuable products

Polyunsaturated fatty acids (omega-3, omega-6)

Oligosaccharides

Phenolics (e.g. vanillin, catechol, tricin⁴⁰ on rosmarinic acid) - antioxidants, antitumor agents⁴¹

Natural carotenoids (*astaxanthin*)

OH

 CH_3

OH

Biomass deconstruction pre-treatments

Ionic liquids

3-step biomass fractionation with ILs

Bioresource Technology 142 (2013) 198-208

Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation

André M. da Costa Lopes^a, Karen G. João^a, Djonatam F. Rubik^{a,b}, Ewa Bogel-Łukasik^c, Luís C. Duarte^a, Jürgen Andreaus^b, Rafał Bogel-Łukasik^{a,*}

^a Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, 1649-038 Lisboa, Portugal

^bUniversidade Regional de Blumenau, Departamento de Química, E9012-500 Blumenau, Brazil

^c Universidade Nova de Lisboa, Faculdade de Clências e Tecnologia, Departamento de Química, REQUIMTE, 2829-516 Caparica, Portugal

RSC Advances

RSCPublishing

PAPER

Cite this: RSC Advances, 2013, 3, 16040

Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids

Sara P. Magalhães da Silva,^{ab} André M. da Costa Lopes,^a Luisa B. Roseiro^a and Rafał Bogel-Łukasik^{*a}

3-step biomass fractionation with ILs

A. M. da Costa Lopes, R. Bogel-Łukasik, PT106947, 2013.

Enzymatic hydrolysis

A. M. da Costa Lopes, K. João, D. Rubik, E. Bogel-Lukasik, L. C. Duarte, J. Andreaus and R. Bogel-Lukasik, Bioresource Technol., 2013, 142, 198-208

Phenolic extraction from recovered IL

Research Article

pubs.acs.org/journal/ascecg

Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins, and Supercritical CO₂

André M. da Costa Lopes,^{†,‡} Miriam Brenner,[†] Pedro Falé,[§] Luísa B. Roseiro,[†] and Rafał Bogel-Łukasik^{*,†}

[†]Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, 1649-038 Lisboa, Portugal

[‡]LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

[§]Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Phenolic extraction from recovered IL

Phenolic profile with Amberlite XAD-7 resin

A. M. da Costa Lopes, M. Brenner, P. Fale, L. B. Roseiro and R. Bogel-Lukasik, ACS Sustain. Chem. Eng., 2016, 4, 3357

Phenolic profile with Amberlite XAD-7 resin

A. M. da Costa Lopes, M. Brenner, P. Fale, L. B. Roseiro and R. Bogel-Lukasik, ACS Sustain. Chem. Eng., 2016, 4, 3357

[bmim][HSO₄] solvent and catalyst for biomass

1-butyl-3-methylimidazolium hydrogen sulphate

Pre-treatment conditions for pentose production

Green Chemistry

PAPER

Cite this: Green Chem., 2018, 20, 4043

Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid⁺

André M. da Costa Lopes, (^b^{a,b} Roberto M. G. Lins, ^b^{a,c} Ricardo A. Rebelo ^c and Rafał M. Łukasik ^{*}

Pre-treatment conditions for pentose production

	Y ₁		11 -	- 15.02	ΤI	
Model parameters (MP)	MP	p				
$oldsymbol{eta}_o$	70.36	0.001				
β_1	28.33	0.004			100	
β_2	2.59	0.72				
$oldsymbol{eta}_3$	5.95	0.45		(%	80	
B ₁₁	-34.95	0.012		6) p		
β_{22}	-8.43	0.44		yiel	60	
β_{33}	-8.20	0.42		se		-
β ₁₂	5.76	0.74		ento	40	
β_{13}	2.59	0.14		ď		1
β_{23}	2.69	0.20			20	
F-test						
ctiveness of the parameters	5.9	90			0 100	4
ificance level	0.0)3			-	Tom
	0.9	91				' eŋ
Pento	nses %	mol				

Obtained

81.9

Expected

78.8

Maximisation of pentose production

Do we have cheaper alternative to ILs?

YES! It is imidazole!

Proprieties

- High boiling-point
- Negligible vapor-pressure
- Low toxicity
- Easy to handle and to recycle
- Amphoteric

Alkaline character Alternative to: Ionic liquids (e.g. 1-ethyl-3-methylimidazolium acetate) Traditional solvents (e.g. ethanol, NaOH...)

 \cap

Precursor of imidazolium-based ILs

Broadly use:

Imidazole – new alternative for IL

Research Article

pubs.acs.org/journal/ascecg

Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification

Ana Rita C. Morais,^{†,‡} Joana Vaz Pinto,[§] Daniela Nunes,[§] Luísa B. Roseiro,[†] Maria Conceição Oliveira,[∥] Elvira Fortunato,[§] and Rafał Bogel-Łukasik^{*,†}

[†]Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal [‡]LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

[§]i3N/CENIMAT, Departmento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

^{II}Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

Imidazole – new alternative for IL

Ana Rita C. Morais, Joana Vaz Pinto, Daniela Nunes, Luísa B. Roseiro, Maria Conceição Oliveira, Elvira Fortunato, Rafal Bogel-Łukasik, ACS Sustainable Chem. Eng., 2016, 4, 1643-1652

Fractionation with imidazole

Temperature effect

 91.4% w·w⁻¹ of lignin present in wheat straw was extracted at 170 °C for 2 h

Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification

Ana Rita C. Morais,^{†,‡} Joana Vaz Pinto,[§] Daniela Nunes,[§] Luísa B. Roseiro,[†] Maria Conceição Oliveira,^{||} Elvira Fortunato,[§] and Rafal Bogel-Łukasik^{*,†}

Imidazole – new alternative for IL

Scanning electron microscopy images and pictures of native wheat straw (a, e) and regenerated cellulose samples produced at 110 °C (b, f), 140 °C (c, g) and 170 °C (d, h) for 2 h reaction

Ana Rita C. Morais, Joana Vaz Pinto, Daniela Nunes, Luísa B. Roseiro, Maria Conceição Oliveira, Elvira Fortunato, Rafał Bogel-Łukasik, *ACS Sustainable Chem. Eng.*, 2016, 4, 1643-1652

Fractionation with imidazole

Enzymatic hydrolysis

Pre-treatment reaction conditions		Glucan conversion	Xylan conversion
Temperature (°C)	Time (h)	yield (w∙w⁻¹)	yield (% w∙w⁻¹)
110	2	55.3±2.3	40.3±3.1
140	2	81.9±2.4	68.9±3.3
170	2	99.3±1.7	80.9±3.8
170	1	99.8±1.5	80.3±2.8
170	4	92.8±1.3	67.3±1.6
Native whe	at straw	34.3±2.1ª	12.9±1.9 ^b

 Pre-treatment with imidazole plays an important role in improving the enzymatic hydrolysis yields

Sustainable Chemistry & Engineering

Research Article

pubs.acs.org/journal/ascecg

Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification

Ana Rita C. Morais,^{†,‡} Joana Vaz Pinto,[§] Daniela Nunes,[§] Luísa B. Roseiro,[†] Maria Conceição Oliveira,^{||} Elvira Fortunato,[§] and Rafal Bogel-Łukasik^{*,†}

Ana Rita C. Morais, Joana Vaz Pinto, Daniela Nunes, Luísa B. Roseiro, Maria Conceição Oliveira, Elvira Fortunato, Rafał Bogel-Łukasik, ACS Sustainable Chem. Eng., 2016, 4, 1643-1652

Imidazole – new alternative for IL

Electropherogram recorded at 320 nm showing the CE separations of methanolic SPE fraction. Matching percentages with authentic standards are indicated.

Ana Rita C. Morais, Joana Vaz Pinto, Daniela Nunes, Luísa B. Roseiro, Maria Conceição Oliveira, Elvira Fortunato, Rafał Bogel-Łukasik, ACS Sustainable Chem. Eng., 2016, 4, 1643-1652

Alternative technology

Sub-/Supercritical Fluids

High-pressure CO₂-H₂O biphasic system

Properties of supercritical fluids

Typical supercritical solvents: CO₂, H₂O, propane, butane

- GRAS generally regardes as safe (scCO₂ and water)
- cheap, non-toxic (scH₂O, scCO₂)
- chemically inert, odourless, testeless
- non-flammable, non-explosive
- reaction gases (H₂, O₂) totally miscible
- reaction and separation step integrated

Phase diagram of CO₂ + H₂O mixture (Geochim Cosmochim AC, 2000, 64, 1753-1764)

	Density (g/mL)	viscosity (P)
gas	~10 ⁻³	0.5-3.5·10 ⁻⁴
scF	0.2-0.9	0.2-1.0·10 ⁻³
liquid	0.8-1.2	0.3-2.4-10 ⁻²

Properties of supercritical fluids

Hydrothermal

$$2H_20 \rightleftharpoons H_30^+ + 0H^-$$

CO₂ + H₂O biphasic system

Mixture becomes more acidic

 $CO_2 + 2H_2O \leftrightarrow HCO_3^- + H_3O^+$ $HCO_3^- + H_2O \leftrightarrow CO_3^{2-} + H_3O^+$

↑ Hydrolysis of hemicellulose
↑ Enzymatic digestibility of cellulose

Estimated pH

 $pH = 8.00 \times 10^{-6} \times T^2 + 0.00209 \times T - 0.216 \times ln(P_{CO_2}) + 3.92*$

50 bar of CO ₂	20/35 bar of CO ₂	Hydrothermal
3.72	3.78	5.5
рН @ T = 200 °С		

*G.P. van Walsum, Appl. Biochem. Biotechnol., 91-3 (2001) 317.

High-pressure CO₂-H₂O biphasic system

Experimental set-up

Effect of CO₂ addition to autohydrolysis

*Carvalheiro et al. Appl. Biochem. Biotechnol., 2009, **153**, 84-93

Cite this: Green Chem., 2014, 16, 238

Sara P. Magalhães da Silva,^{a,b} Ana Rita C. Morais^a and Rafał Bogel-Łukasik*^a

Effect of CO₂ addition on the morphology of residue

Scanning electron microscopy

^aT = 225^oC; ^binitial CO₂ pressure of 60 bar

Addition of CO_2 to water promotes **advanced disruption of structure** of processed solids in comparison to autohydrolysis.

Green Chemistry

PAPER

Cite this: Green Chem., 2014, 16, 4312

Integrated conversion of a groindustrial residue with high pressure \mbox{CO}_2 within the biore finery concept

Effect of CO₂ addition and pressure

Enzymatic hydrolysis

PAPER

Integrated conversion of agroindustrial residue with high pressure CO₂ within the biorefinery concept

View Article Onli

Enzymatic conditions: Celluclast[®] 1.5 L (64 FPU/g) and Novozym 188 (60 FPU/g); 0.1 M sodium citrate buffer (pH = 4.8) and 2 % (w/w) sodium azide solution, 250 rpm and 50 °C

Furfural production – approach concept

DOI: 10.1039/c5gc02863a

Ana Rita C. Morais^{a,b} and Rafal Bogel-Lukasik*^a

CO₂ as catalyst and phase splitting inductor

Benefits

- Acidic medium **does not** represent a problem
- No need of salts ightarrow biphasic system
- CO₂ and THF are easily recycled and reused

Green Chemistry

COMMUNICATION

Cite this: DOI: 10.1039/c5gc02863a Received 30th November 2015, Accepted 1st February 2016 DOI: 10.1039/c5gc02863a Highly efficient and selective CO2-adjunctive dehydration of xylose to furfural in aqueous media with THF \dagger

CHEMIST

View Article Online

Ana Rita C. Morais^{a,b} and Rafal Bogel-Lukasik*^a

Every action we take influences the entire value chain and because of this to achieve a **breakthrough** needed to address the challenges of nowadays society collaboration between technology, social sciences & humanities are strongly needed!

"I understand that international cooperation is a very hard task. However, it must be undertaken even at the cost of many efforts and true dedication"

Maria Skłodowska-Curie

Acknowledgments

Ana R. C. Morais Ana V. Carvalho André M. da Costa Lopes Andréia Toscan Antonio Lopes Daniela Matuschaki **Douglas Fockink** Frederico M. Relvas Hatice Naval Mucuk Joana Bernardo Jonatam D. Rubik Karen João Katarzyna Pawłowska Linda Gonçalves Lucinda Conceição Marcoaurélio Rodrigues Márcia Ribeiro Miriam Brenner Pedro Perreira **Roberto Lins** Sara Magalhães da Silva Susana Peleteiro

Aurore Richel (ULiège/Belgium) Daniela Nunes (FCTUNL/Portugal) Elba Bom (UFRJ/Brazil) Elvira Fortunato (FCTUNL/Portugal) Fahrettin Gogus (Gaziantep University/Turkey) Filipe Neves (LNEG/Portugal) Florbela Carvalheiro (LNEG/Portugal) Francisco Gírio (LNEG/Portugal) James Clark (UYork/UK) Joana Pinto (FCTUNL/Portugal) José C. Roseiro (LNEG/Portugal) Juan Carlo Parajó (UVigo/Spain) Jurgen Andreaus (FURB/Brazil) Luís C. Duarte (LNEG/Portugal) Luisa B. Roseiro (LNEG/Portugal) Luiz Ramos (UFPR/Brazil) Maria Conceição Oliveira (FCUL/Portugal) Mário Aguedo (ULiège/Belgium) Mihkel Koel (TUT/Estonia) **Ricardo Rebelo (FURB/Brazil)**

BRISK

RSC Green Chemistry

High Pressure Technologies in Biomass Conversion

Edited by Rafal Bogel-Lukasik

RSC Green Chemistry

Ionic Liquids in the Biorefinery Concept

Challenges and Perspectives

Edited by Rafal Bogel-Lukasik

www.lneg.pt

